
Stabilization of a Tumbling Quadcopter UAV
Implementing and Testing of Geometric Control on ArduPilot

Firmware

Submitted in partial fulfillment of the requirements

of the degree of

Master of Technology

by

Arjun Sadananda
(Roll No. 213236002)

Supervisors:

Prof. Ravi N Banavar
Prof. Kavi Arya

Systems & Control Engineering

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

2023

Declaration

I declare that this written submission is original and where others ideas or words have

been included, I have adequately cited and referenced the original sources. I also declare that I

have adhered to all principles of academic honesty and integrity and have not misrepresented,

fabricated or falsified any idea/data/fact/source in my submission. I understand that any viola-

tion of the above will be cause for disciplinary action by the Institute and can also evoke penal

action from the sources that have thus not been properly cited or from whom proper permission

has not been taken when needed.

Date:
Arjun Sadananda

Roll No. 213236002

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Stage I Report Outline . 3

2 Review of Literature 5

2.1 Dynamical System . 5

2.2 Defining Flight Modes . 8

2.3 Controller Design . 9

2.3.1 ATTITUDE CONTROLLED FLIGHT MODE 9

2.3.2 VELOCITY CONTROLLED FLIGHT MODE 12

2.4 ArduPilot Controller . 13

2.4.1 Copter Attitude Control . 13

2.4.2 Copter Position Control and Navigation 16

3 Hardware & Software Setup 19

4 Summary and Future Work 23

Appendix A ArduPilot Firmware 25

A.1 mode_throw.cpp . 25

References 29

Acknowledgments 31

i

Chapter 1

Introduction

1.1 Background

T he project aims to implement and test the nonlinear geometric controller described in Lee

et al. (2010a) and Lee et al. (2010b)(Control of Complex Maneuvers for a Quadrotor

UAV using Geometric Methods on SE(3) - Taeyoung Lee, Melvin Leok, and N. Harris McClam-

roch) on a Quadcopter Unmanned Aerial Vehicle (UAV). The control objective chosen is to

"Stabilise a Tumbling Quadcopter UAV". Stabilise here means to achieve zero angular and

linear velocity. Tumbling here means to initialize the UAV with "large" non-zero angular and

linear velocity.

The present version of ArduPilot Firmware ArduPilotDevTeam (????b) is already capable

of doing this to some extent. Therefore additionally the aim of the project also includes a com-

parison of the "performance" of the geometric controller and the present version of ArduPilot

Firmware (4.4.x).

ArduPilot is one of the most widely used open-source flight controller firmware for au-

tonomous drones. (Betaflight and iNav are the most widely used flight controller firmware in

1

the FPV (First-Person View) and drone racing communities, which also use a similar controller

at the core). ArduPilot Firmware uses an advanced implementation of PID controller to achieve

a wide variety of "flight modes" to achieve varying levels of autonomy. At the core of all the

advanced "flight modes", lies the attitude controller, where a P controller converts the Euler

angle errors into desired rotation rates followed by a PID controller to convert the rotation rate

error into high-level motor commands. ArduPilotDevTeam (????a)

The first step in introducing Geometric Control in the firmware will be to introduce a

new attitude controller described as ATTITUDE CONTROLLED FLIGHT MODE in Lee et al.

(2010a) with Rd(t) = e ∈ SO(3) in ArduPilot. But this only achieves zero angular velocity and

allows the drone to drift with non-zero linear velocities. Therefore the next phase will be to in-

troduce the VELOCITY CONTROLLED FLIGHT MODE described in Lee et al. (2010a) with

vd(t) = 0 ∈ R3. Finally, an Altitude Control (or partial POSITION CONTROLLED FLIGHT

MODE) can be introduced to additionally achieve a desired altitude. The three flight modes lim-

ited to the specific commands described above correspond to three flight modes implemented

in ArduPilot named: STABILIZE, FLOWHOLD, and ALTHOLD modes (partial POSHOLD)

respectively. The final mode that we shall integrate Geometric Control into is what is known as

THROW mode in ArduPilot.

1.2 Motivation

Geometric control is concerned with the development of control systems for dynamic systems

evolving on nonlinear manifolds that cannot be globally identified with Euclidean spaces. By

characterizing the geometric properties of nonlinear manifolds intrinsically, geometric control

techniques provide unique insights into control theory that cannot be obtained from dynamic

models represented using local coordinates. The proposed controller in Lee et al. (2010a) ex-

hibits the following unique features:

• It guarantees almost global tracking features of a quadrotor UAV as the region of attrac-

tion almost covers the attitude configuration space SO(3). Such global stability analysis

on the special Euclidean group of a quadrotor UAV is unprecedented(2010).

• It is coordinate-free. Therefore, it completely avoids singularities, complexities, discon-

2

tinuities, or ambiguities that arise when using local coordinates or quaternions.

Therefore the minimum expectation in the "stabilization of tumbling quadcopter UAV"

problem is to have a "larger" domain of attraction as compared to the existing ArduPilot Firmware.

It will also be interesting to compare the transient behaviors of the systems with the geometric

controller and the present ArduPilot Controller. Additionally,

• Hybrid control structures between different tracking mode is robust to switching condi-

tions due to the almost global stability properties. Therefore, aggressive maneuvers of a

quadrotor UAV can be achieved in a unified way, without need for complex reachability

analyses.

Which is good for future extension of this work to more complex problems.

1.3 Stage I Report Outline

Stage 1 of this project focused on the Literature Survey and Hardware & Software setup. The

literature survey mainly concentrates on the controller proposed in [Lee et al. (2010a) and Flight

Controller Firmware documentation. This report summarises the work done so far in 2 more

chapters that follow. Chapter 2 shall cover the theory or the review of literature on the Geometric

Controller and the ArduPilot Controller. Chapter 3 shall cover the Hardware and Software setup

for the implementation phase. Finally, Chapter 4 shall summarise and present the future work

for this project.

3

This page was intentionally left blank.

Chapter 2

Review of Literature

2.1 Dynamical System

This section describes the mathematical model of the quadrotor UAV rigid body dynamics, de-

fined on the configuration space SE(3). This is introduced in Lee et al. (2010a) as a basis for

the analysis.

Constants:

Define:

m ∈ R the total mass

d ∈ R the "drone radius": distance of the center of each motor to the center of mass

J ∈ R3 the inertia matrix with respect to body-fixed frame

Configuration Manifold

The configuration of this quadrotor UAV is defined by the location of the center of mass and the

attitude with respect to the inertial frame. Therefore, the configuration manifold is the special

5

Euclidean group SE(3) = R3 ⋊ SO(3), which is the semidirect product of R3 and the special

orthogonal group SO(3) = {R ∈ R33|RT R = I,detR = 1}. Define:

x the position vector of the center of mass, (origin of b frame) w.r.t s frame.

R the rotation matrix from the body-fixed frame to the inertial frame.

x =

x1

x2

x3

 ∈ R3 R =

| | |

b1 b2 b3

| | |

 ∈ SO(3)

bi is the transformed body frame coordinates in NED frame coordinates {North-East-Down

Frame}

Velocity - Tangent Space

Define:

v the velocity vector of the center of mass in inertial frame

Ω the angular velocity in body-fixed frame

so(3)∼= TeSO(3)

v =

v1

v2

v3

 ∈ R3 Ω =

ω1

ω2

ω3

 ∈ R3 ∼= so(3) ∋

0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

= Ω̂

the hat mapˆ: R3 → so(3) is defined by the condition that x̂y = x× y for all x,y ∈ R

6

Control Input Remapping (Kinematics)

This is also related to what is called "MOTOR MIXING" in AP_Motors Library of ArduPilot.

f

M1

M2

M3

=

1 1 1 1

0 −d 0 d

d 0 −d 0

−cτ f cτ f −cτ f cτ f

f1

f2

f3

f4

This mapping from thrust fi to f and M ∈ R3 is invertible when 8cτ f d2 (which is true for all

quadcopter UAVs). Therefore we use f and M ∈ R3 as the control inputs.

Equations of Motion

The equations of motion of the quadrotor UAV can be written as

ẋ = v

mv̇ = mge3 = f Re3

Ṙ = RΩ̂

JΩ̇+Ω× JΩ = M

Linear Dynamical System

To do a theoretical analysis of the ArduPilot’s Controller it would be a good idea to also look

at the model of Quadcopter UAV on (x,y,z,ψ,θ ,φ) ∈ R6 using Euler (Tait Bryan) Angles

described in:

Castillo Garcia et al. (2023)Stabilization of a Mini Rotorcraft with Four Rotors By Pedro

Castillo, Rogelio Lozano, and Alejandro Dzul

Which is a paper on experimental implementation and comparison of LQR and nonlinear

control laws (described in Teel (1992)Global stabilization and restricted tracking for multiple

integrators with bounded controls - Andrew R. Teel). This is not summarised here, since it is

not important in the Stage 1 Report.

7

2.2 Defining Flight Modes

Since the quadrotor UAV has four inputs, it is possible to achieve asymptotic output tracking

for at most four quadrotor UAV outputs. The quadrotor UAV has three translational and

three rotational degrees of freedom; it is not possible to achieve asymptotic output tracking

of both the attitude and position of the quadrotor UAV. This motivates us to introduce several

flight modes. Each flight mode is associated with a specified set of outputs for which exact

tracking of those outputs define that flight mode.

Geometric Controller Flight Modes The three flight modes considered in the paper [Lee et al.

(2010a) are:

• Attitude controlled flight mode: the outputs are the attitude of the quadrotor UAV and the

controller for this flight mode achieves asymptotic attitude tracking.

• Position controlled flight mode: the outputs are the position vector of the center of mass

of the quadrotor UAV and the controller for this flight mode achieves asymptotic position

tracking.

• Velocity controlled flight mode: the outputs are the velocity vector of the center of mass

of the quadrotor UAV and the controller for this flight mode achieves asymptotic velocity

tracking.

ArduPilot Flight Modes

Copter has 25 flight built-in flight modes, 10 of which are regularly used. ArduPilotDevTeam

(????a) The table shows the ArduPilot Flight modes that are relevant to the objective of this

project (and two others are listed here just because they are interesting, Flip and Acro)

Symbol Definition

- Manual control

+ Manual control with limits & self-level

s Pilot controls climb rate

A Automatic control

8

Mode Alt Ctrl Pos Ctrl Summary

Stabilize - + Self-levels the roll and pitch axis

Alt Hold s + Holds altitude and self-levels the roll & pitch

FlowHold s A Position control using Optical Flow

Loiter s s Holds altitude and position, uses GPS for move-

ments

PosHold s + Like loiter, but manual roll and pitch when

sticks not centered

Simple An add-on to flight modes to use pilot’s view

instead of yaw orientation

Throw A A Holds position after a throwing takeoff

Flip A A Rises and completes an automated flip

Acro - - Holds attitude, no self-level

Table 2.1: ArduPilot Flight Modes

2.3 Controller Design

2.3.1 ATTITUDE CONTROLLED FLIGHT MODE

Control Objective

An arbitrary smooth attitude tracking command Rd(t) ∈ SO(3) is given as a function of time.

As a first approach to stabilization of a tumbling UAV, this can be simplified to track a constant

e ∈ SO(3). Note that this doesn’t define any translational motion objective. The corresponding

angular velocity command is obtained by the attitude kinematics equation:

t → Rd(t) ∈ SO(3) Ω̂d = RT
d Ṙd

For the first approach to stabilising a tumbling quadcopter, this would simplify to;

Rd = e ∈ SO(3) Ω̂d = 0

9

Error Function

First, define the real-valued error function on SO(3)×SO(3):

ψ(R,Rd) =
1
2

tr[I −RT
d R] ψ(R, I) =

1
2

tr[I −R]

This function is locally positive-definite about R=Rd within the region where the rotation angle

between R and Rd is less than 180◦. This set can be represented by the sublevel set of ψ where

ψ < 2 which almost covers SO(3).

When variation of R is represented as δR = Rη̂ for η ∈ R3 the derivative of the error function

is given by

DRΨ(R,Rd).Rη̂ =−1
2

tr[RT
d Rη̂] =

1
2
(RT

d R−RT Rd)
∨.η = eR.η

We use −1
2tr[x̂ŷ = xT y. From this, the Attitude Tracking Error is chosen to be

R3 ∋ eR =
1
2
(RT

d R−RT Rd)
∨ R3 ∋ eR =

1
2
(R−RT)∨

The vee map ∨ : so(3)→ R3 is the inverse of the hat map.

It is an interesting observation that if we look at the exponential map from the Lie algebra so(3)

to its Lie group SO(3), and represent the rotation in terms of axis ω and angleθ as follows

R = I + sin(θ)ω̂ +(1− cos(θ)ω̂2. The error function is 1− cos(θ) and the attitude tracking

error is sin(θ)

The tangent vectors Ṙ ∈TRSO(3) and Ṙ ∈TRdSO(3) cannot be directly compared since they lie

in different tangent spaces. We transform Ṙd into a vector in TRSO(3), and we compare it with

Ṙ as follows Ṙ− Ṙd(RT
d R). Therefore we choose the Angular Velocity Tracking Error as

R3 ∋ eΩ = Ω−RT RdΩd R3 ∋ eΩ = Ω

We can show that eΩ is the angular velocity of the rotation matrix RT
d , represented in the body-

fixed frame, since d/dt(RT
d R) = (RT

d R)êΩ

10

Geometric Attitude Tracking Controller

M =−kReR − kΩeΩ +Ω× JΩ− J(Ω̂RT RdΩd −RT RdΩ̇d)

M =−kReR − kΩeΩ +Ω× JΩ

In this attitude-controlled mode, it is possible to ignore the translational motion of the

quadrotor UAV; consequently, the reduced model for the attitude dynamics are given by using

the controller expression in the Rotational Kinematics and Dynamics equations of motion. The

paper states the result that (eR,eΩ) = (0,0) is an exponentially stable equilibrium of the re-

duced closed loop dynamics. An estimate of the domain of attraction is obtained for which the

quadrotor attitude lies in the sublevel set L2 = {R ∈ SO(3)|φ(R,Rd)< 2} for a given Rd . More

explicitly, the attitudes that lie outside of the region of attraction are of the form exp(π ŝ)Rd for

some s ∈ S2. Since they comprise a two-dimensional manifold in the three-dimensional SO(3),

we claim that the presented controller exhibits almost global properties in SO(3).

The corresponding ArduCopter Flight mode is: STABILIZE MODE where the thrust is

left to the pilot. But, this is not exactly true, because in this mode the pilot provides roll and

pitch angles (w.r.t to yaw orientation) and yaw rate instead of yaw angle. There is another

mode in ArduCopter called SIMPLE MODE which defines the desired roll and pitch in the

pilot/global frame. ArduCopter’s controller is discussed in Section 2.4.

Additionally, we could implement an Altitude Controller to track a desired altitude x3d , as

follows:

f =
kx(x3 − x3d)+ kv(ẋ3 − ˙x3d)+mg−m ¨x3d

e3.Re3

But before we get to position control the first objective for this problem statement is to stabilise

the velocity. Therefore instead of next looking at the POSITION CONTROLLED FLIGHT

MODE we are interested in VELOCITY CONTROLLED FLIGHT MODE.

11

2.3.2 VELOCITY CONTROLLED FLIGHT MODE

Control Objective

An arbitrary velocity tracking command and the desired direction of the first body-fixed axis is

given

t → vd(t) ∈ R3 b1d(t) ∈ S2

which simplifies to vd = 0 ∈ R3 for stabilisation of a tumbling drone.

Velocity Tracking Error is given by ev = v− vd

The nonlinear controller for the velocity-controlled flight mode is given by

f = (kvev +mge3 −mv̇d).Re3 whichreducesto f = (kvev +mge3).Re3 if vd = 0

M =−kReR − kΩeΩ +Ω× JΩ− J(Ω̂RT RcΩc −RT RcΩ̇c)

where kv, kR, kΩ are positive constants, and following the prior definition of the attitude error

and the angular velocity error

eR =
1
2
(RT

c R−RT Rc)
∨ eΩ = Ω−RT RcΩc

and Rc(t) ∈ SO(3)andΩc ∈ R3 are constructed as:

Rc = [b1c;b3c ×b1c;b3c] , Ω̂c = RT
c Ṙc

where b3c ∈ S2 is defined by

b3c =
−kvev −mge3 +mv̇d

∥− kvev −mge3 +mv̇d∥
b3c =

−kvev −mge3

∥− kvev −mge3∥

12

and b1c ∈ S2 is chosen to be orthogonal to b3c, thereby guaranteeing Rc ∈ SO3

b1c = Pro j[b1d]−
b3c ×b1d

∥b3c ×b1d∥

For stabilisation of Tumbling UAV we could choose b1d = e1 or b1d = e2 or to relax the control

objective b1d = e3×b1
∥e3×b1∥ or equivalently in this case b1d = b1.

We assume that ∥kvev+mge3−mv̇d∥ ̸= 0 and ∥mge3−mv̇d∥<B. where B is a positive constant.

NOTE: The Stabilization version corresponds to the "FLOW HOLD" mode on ArduPilot.

Additionally, the general mode is closer to LOITER MODE on ArduPilot than POSHOLD but

we may be more interested in POSHOLD since we do not want to rely on GPS for position

estimation.

2.4 ArduPilot Controller

2.4.1 Copter Attitude Control

The ArduPilot Developers’ Documentation explains the controller in some depth.

Figure 2.1 is a high-level diagram showing how the attitude control is done in ArduCopter.

Figure 2.2 describes what is done for each axis. A P controller converts the angle error (the

difference between the target angle and actual angle) into a desired rotation rate followed by a

PID controller to convert the rotate rate error into a high level motor command. The “square root

13

Figure 2.1: Test image include graphix.

controller” portion of the diagram shows the curve used with the angle control’s P controller.

Figure 2.3 shows the code path followed from pilot input down to PWM output.

NOTE: This is only part of the picture, the code exploration of the ArduPilot controller is

ongoing and will be presented in the next stage of this project.

On every update (i.e. 400hz on Pixhawk, 100hz on APM2.x) the following happens:

• the top level flight-mode.cpp’s “update_flight_mode()” function is called. which in turn

calls the appropriate <flight mode>_run() function.

• the <flight mode>_run function is responsible for converting the user’s input into a lean

angle, rotation rate, climb rate, etc that is appropriate for this flight mode.

• the last thing the <flight mode>_run function must do is pass these desired angles, rates

etc into Attitude Control and/or Position Control libraries. The AC_AttitudeControl li-

brary provides 5 possible ways to control the attitude of the vehicle, the most common 3

are described below.

– angle_ef_roll_pitch_rate_ef_yaw(): this accepts an “earth frame” angle for roll and

pitch, and an “earth frame” rate for yaw.

NOTE: STABILIZE MODE

14

Figure 2.2: Test image include graphix.

15

Figure 2.3: Test image include graphix.

– angle_ef_roll_pitch_yaw(): this accepts “earth frame” angles for roll, pitch and yaw.

NOTE: ATTITUDE CONTROLLED FLIGHT MODE

– rate_bf_roll_pitch_yaw(): this accepts a “body frame” rate (in degrees/sec) for roll

pitch and yaw.

• After any calls to these functions are made the AC_AttitudeControl::rate_controller_run()

is called. This converts the output from the methods listed above into roll, pitch and yaw

inputs which are sent to the AP_Motors library via it’s set_roll, set_pitch, set_yaw and

set_throttle methods.

2.4.2 Copter Position Control and Navigation

AC_PosControl is the core library that is used by all the more autonomous modes that require

position control.

• Separate interfaces for horizontal (X and Y axis) control and vertical (Z-axis) control.

These interfaces are separated because some flight modes (like AltHold mode) only re-

quire the Z-axis controller

• Layered PID controllers are used

– XY axis uses a Position P to convert position error to a target velocity. A velocity

PID converts velocity error into a desired acceleration which is then converted to a

desired lean angle which is then sent into the attitude control library.

– The Z axis uses a Position P controller to convert position error to a target vertical

velocity (aka climb rate). A Velocity P controller converts velocity error to a desired

acceleration. An Acceleration PID converts acceleration error into a desired throt-

16

Figure 2.4: Test image include graphix.

tle which is then sent into the attitude control library (which mostly just passes it

through to the low level motors library)

• AC_PosControl also includes a 3D velocity controller and a 3D Position+Velocity con-

troller

Attached in the appendix is a code snippet and some comments about the state machine in

throw_mode.cpp file. This is the mode that comes closest to achieving the control objective of

this project.

17

This page was intentionally left blank.

Chapter 3

Hardware & Software Setup

On the Hardware and Software setup side of the project, there have been a few iterations

and learnings from each iteration.

First Build

The first build was the minimal build. With the bare minimum requirements to achieve the

desired result.

Components: GEP-12A-F4 Flight Controller 12A ESC, STM32F411, BMI270/42688, No

Baro, 25.5×25.5mm, M2, GR1105 5000kV, Prop Length 3”, Pitch, 1.5”, 2 blade, Archer-RS,

Transmitter FrSky X9 Lite

This drone was flashed with the Betaflight firmware and was flown in what Betaflight

calls ANGLE MODE (same as STABILIZE MODE). With some piloting skills, this drone

was already capable of stabilizing from tumbling initial conditions. However, efforts put into

19

further work on this drone were stopped early on, in order to incorporate more sensors required

to achieve the control objective completely autonomously.

Second Build

The next iteration incorporated all the sensors one would need to achieve this goal with

minimum/no piloting skills.

This drone was flashed with iNav firmware which supported more sensor interfacing than

Betaflight. But on further investigation, it was decided to switch to ArduPilot for multiple

reasons. One of the top reason was that despite appearing more intimidating at first, it has much

better documentation for developers to learn the firmware code.

20

Ongoing Build The final iteration in progress is an upgrade of all the specs, better flight

controller, better sensors, better mechanical design, etc.

21

This page was intentionally left blank.

Chapter 4

Summary and Future Work

To summarise, in Stage 1 of this project, we have done all the preparatory/background

work needed to Implement and Test Geometric Control on ArduPilot Firmware. We looked at

the dynamics of a quadcopter UAV on the SE(3) manifold. We went on to clearly define the

control objective and the different flight modes. Finally, in the literature review of geometric

control, we looked at the actual controller in two flight modes that we will need for the Stabilisa-

tion of a tumbling drone. Next, we looked at the existing approaches in ArduCopter to achieve

the desired objective. We looked at the different flight modes in ArduPilot and briefly looked

at the two core control modules of ArduCopter: "Attitude Control" and "Position Control". We

also iterated through a few hardware and software setups to better achieve the desired objective.

The next part of this project involves completing the Hardware and Software setup for

the third iteration and implementing the ArduCopter’s Controller to achieve stabilisation of a

tumbling quadcopter UAV.

Next, we shall start by implementing Geometric Attitude Control on hardware. Eventually,

we shall create a new control flight mode in ArduPilot to implement the full objective of this

project. We’ll then need to devise and implement a strategy to "test"/compare the two controllers

by choosing and logging the relevant data from the flight controller.

23

That will conclude the M.Tech. Project of Stabilising a Tumbling Quadcopter UAV using

Geometric Control.

24

Appendix A

ArduPilot Firmware

A.1 mode_throw.cpp

Throw State Machine (Code not shown)

Throw_Disarmed - motors are off

Throw_Detecting - motors are on and we are waiting for the throw

Throw_Uprighting - the throw has been detected and the copter is being uprighted

Throw_HgtStabilise - the copter is kept level and height is stabilised about the target height

Throw_PosHold - the copter is kept at a constant position and height

1 switch (stage) {

2

3 case Throw_Disarmed:

4

5 // prevent motors from rotating before the throw is detected unless

enabled by the user

6 if (g.throw_motor_start == PreThrowMotorState :: RUNNING) {

25

7 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

GROUND_IDLE);

8 } else {

9 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState :: SHUT_DOWN)

;

10 }

11

12 // demand zero throttle (motors will be stopped anyway) and continually

reset the attitude controller

13 attitude_control ->reset_yaw_target_and_rate ();

14 attitude_control ->reset_rate_controller_I_terms ();

15 attitude_control ->set_throttle_out (0,true ,g.throttle_filt);

16 break;

17

18 case Throw_Detecting:

19

20 // prevent motors from rotating before the throw is detected unless

enabled by the user

21 if (g.throw_motor_start == PreThrowMotorState :: RUNNING) {

22 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

GROUND_IDLE);

23 } else {

24 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState :: SHUT_DOWN)

;

25 }

26

27 // Hold throttle at zero during the throw and continually reset the

attitude controller

28 attitude_control ->reset_yaw_target_and_rate ();

29 attitude_control ->reset_rate_controller_I_terms ();

30 attitude_control ->set_throttle_out (0,true ,g.throttle_filt);

31

32 // Play the waiting for throw tone sequence to alert the user

33 AP_Notify :: flags.waiting_for_throw = true;

34

35 break;

36

37 case Throw_Wait_Throttle_Unlimited:

38

26

39 // set motors to full range

40 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

THROTTLE_UNLIMITED);

41

42 break;

43

44 case Throw_Uprighting:

45

46 // set motors to full range

47 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

THROTTLE_UNLIMITED);

48

49 // demand a level roll/pitch attitude with zero yaw rate

50 attitude_control ->input_euler_angle_roll_pitch_euler_rate_yaw (0.0f, 0.0f

, 0.0f);

51

52 // output 50% throttle and turn off angle boost to maximise righting

moment

53 attitude_control ->set_throttle_out (0.5f, false , g.throttle_filt);

54

55 break;

56

57 case Throw_HgtStabilise:

58

59 // set motors to full range

60 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

THROTTLE_UNLIMITED);

61

62 // call attitude controller

63 attitude_control ->input_euler_angle_roll_pitch_euler_rate_yaw (0.0f, 0.0f

, 0.0f);

64

65 // call height controller

66 pos_control ->set_pos_target_z_from_climb_rate_cm (0.0f);

67 pos_control ->update_z_controller ();

68

69 break;

70

71 case Throw_PosHold:

27

72

73 // set motors to full range

74 motors ->set_desired_spool_state(AP_Motors :: DesiredSpoolState ::

THROTTLE_UNLIMITED);

75

76 // use position controller to stop

77 Vector2f vel;

78 Vector2f accel;

79 pos_control ->input_vel_accel_xy(vel , accel);

80 pos_control ->update_xy_controller ();

81

82 // call attitude controller

83 attitude_control ->input_thrust_vector_rate_heading(pos_control ->

get_thrust_vector (), 0.0f);

84

85 // call height controller

86 pos_control ->set_pos_target_z_from_climb_rate_cm (0.0f);

87 pos_control ->update_z_controller ();

88

89 break;

90 }

28

References
ArduPilotDevTeam, ????a.

URL https://ardupilot.org/dev/

ArduPilotDevTeam, ????b. Arduplane, arducopter, ardurover, ardusub source. https://

github.com/ArduPilot/ardupilot.git.

URL https://github.com/ArduPilot/ardupilot.git

Castillo Garcia, P., Lozano, R., Dzul, A., 10 2023. Stabilization of a mini-rotorcraft having four

rotors. Vol. 3. pp. 2693 – 2698 vol.3.

Lee, T., Leok, M., McClamroch, N. H., 2010a. Control of complex maneuvers for a quadrotor

uav using geometric methods on se (3). arXiv preprint arXiv:1003.2005.

Lee, T., Leok, M., McClamroch, N. H., 2010b. Geometric tracking control of a quadrotor uav

on se (3). In: 49th IEEE conference on decision and control (CDC). IEEE, pp. 5420–5425.

Teel, A. R., 1992. Global stabilization and restricted tracking for multiple integrators with

bounded controls. Systems & control letters 18 (3), 165–171.

29

https://ardupilot.org/dev/
https://github.com/ArduPilot/ardupilot.git
https://github.com/ArduPilot/ardupilot.git
https://github.com/ArduPilot/ardupilot.git

This page was intentionally left blank.

Acknowledgments

31

	Introduction
	Background
	Motivation
	Stage I Report Outline

	Review of Literature
	Dynamical System
	Defining Flight Modes
	Controller Design
	ATTITUDE CONTROLLED FLIGHT MODE
	VELOCITY CONTROLLED FLIGHT MODE

	ArduPilot Controller
	Copter Attitude Control
	Copter Position Control and Navigation

	Hardware & Software Setup
	Summary and Future Work
	Appendix ArduPilot Firmware
	mode_throw.cpp

	References
	Acknowledgments

